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Abstract. The dynamic properties of Q2R cellular automata for the Ising model are studied 
numerically on the square lattice, with particular emphasis on the periods observed for 
single spins, clusters of neighbouring spins and the whole lattice. We find some numerical 
indications for a ‘cluster-period critical point’ at a temperature below the Curie temperature 
of the Ising magnet. 

1. Introduction 

In cellular automata the change in each variable for every time step depends in a 
simple and predictable way on the current values of the variable in the neighbouring 
cells of the lattice [l-31. Pomeau has suggested [4] that the so-called Q2R rule [5-71 
should simulate the Ising magnet in a microcanonical ensemble. This method leads 
to the fastest known algorithm [ 5 ]  (lo9 steps per second and processor on a Cray) for 
Ising model simulations. Also other cellular automata have been investigated [ 6 , 7 ]  
in connection with the Ising model. The present paper investigates these Q2R automata 
not from the point of computational speed but with respect to one of the crucial 
questions in cellular automata theory: does the system, or a part of it, settle into a 
periodic motion, without ever reaching a time-independent equilibrium? 

In Q2R automata, each site i of a lattice is occupied by a spin Si with the possible 
values -1 and + l .  One starts from a rather disordered configuration. At every time 
step, the sign of the spin is changed if and only if this spin has the same number of 
parallel and antiparallel neighbours. Thus this spin flip does not change the energy 
of the system, and therefore this type of simulation corresponds to a microcanonical 
ensemble with fixed energy, not to a canonical ensemble with fixed temperature. (Spins 
are not‘updated all at once but the square lattice is divided into two sublattices; first 
one, then the other, sublattice is updated. No magnetic field is taken into account.) 
A spontaneous magnetisation was shown [5] to appear for temperatures below the 
Curie temperature. However, for sufficiently low temperatures or energies, oscillations 
in the magnetisation were observed [5] which did not die down with increasing time 
and thus hampered its accurate determination. Trivially, after at most 2N time steps 
a lattice with N spins will have returned to its initial configuration since these cellular 
automata are completely deterministic and reversible, and since the lattice has only 
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2 N  different configurations. However, with nearly a million spins employed in [ 5 ] ,  
this effect cannot be the reason for the observed periods and would anyhow be negligible 
in the thermodynamic limit N + w ,  even if only the smaller subset of configurations 
with a fixed energy is investigated. Instead we want to know if much smaller periods, 
not exponentially in lattice size, exist in our problem. 

If such periods exist they imply that the system is not ergodic, i.e. even if one waits 
infinitely long one does not reach in the simulation a sufficient number of different 
states with the given energy. The reverse is not true: averages could be wrong even if 
the period is infinite for an infinite system. 

We study here the more practical question of periods. If the whole lattice, or 
appreciable parts of it, are locked into a ‘limit cycle’ of finite period, the simulation 
may give serious deviations from the desired equilibrium results since then the oscilla- 
tions in, for example, the magnetisation do  not vanish if we wait longer. We thus 
check for periods of the lattice, or of parts of the lattice, and see in particular whether 
these periods diverge at a certain phase transition energy. 

All simulations were made on square lattices of size L X  L, with 32G L G  6400; 
presumably these constitute by far the largest cellular automata lattices reported so 
far (much larger simulations on a Cray 2 were performed later [5]). The energy is 
normalised to be zero for a random spin distribution and to be -2 for all spins parallel; 
E = -1.41 is then the total energy at the Curie point. We first set all spins Si = -1 and 
then select randomly some spins to be flipped, until we reach the desired energy. This 
configuration then is the starting point of the completely deterministic evaluation of 
the cellular automata; see [SI for computational details. 

2. Global periods 

First we check if the lattice as a whole has a finite period, which we call the global 
period T. For this purpose one monitors and stores the magnetisation as a function 
of time. If the magnetisation after T time steps agrees with the initial one, we suspect 
a global period of T, store the present configuration, make T additional time steps 
and compare the resulting configuration with the stored one. If they agree in all spins, 
the period of the lattice is indeed T, otherwise one searches further. If no lattice period 
is found it means that the true period is larger than the maximum observable period 
T (roughly the observation time), in which case we call it ‘infinite’. Since the model is 
completely reversible it is not possible that one first has to go through an extended 
transient regime before the periodic motion begins. If a period is found, the initial 
configuration is already part of it. 

Figure 1 shows as a function of energy E the probability W, for an ‘infinite’ global 
period T, with lattice length L varying over more than two orders of magnitude, and 
T- lo3. The larger the lattice, the closer to unity is that probability. Presumably in 
the limit L + 00 this probability is unity for all E, i.e. injinitely large lattices have injinitely 
large periods. The average period ( T ) ,  averaged over those samples for which such a 
lattice period was found, is shown in figure 2 and diverges at about that energy where 
the probability curve of figure 1 reaches unity. All data for L 2 128 were obtained with 
a vectorised FORTRAN program [5] on a Cray-XMP computer. 

At first sight these results would suggest that for sufficiently large lattices the 
simulation is not locked into finite periods and covers a large enough phase space to 
give good averages. However, such a conclusion would be dangerous since it could 
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Figure 1. Probability W, that the L x L lattice has an infinite global period as a function 
of energy E for various lattice lengths L (U, 6400; V, 1280; 0,640; X, 256; 0, 128; A, 32). 
The lines are guides to the eye. 
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Figure 2. Average global period ( T )  of L x L lattice as a function of energy E (0, L = 6400; 
0, L = 640; x, L = 256; 0, L = 128; A, L = 32).  The lines are guides to the eye. 

be that one part of the lattice has period 5, another period 13, a third period 51, etc. 
Then the global period of the whole lattice would be the lowest common multiple of 
the various periods of all the different parts, which would be at least 3315 and thus 
'infinite' in the above example. Figures 1 and 2 thus do not prove that in a sufficiently 
large lattice no sites have small local periods. Therefore the next section looks at such 
local periods which may be of more fundamental interest but are more memory 
consuming in their evaluation. 

(For L s 20, the average global period increases roughly exponentially with the 
number of spins at high temperatures; at low temperatures that increase is weaker.) 
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3. Clusters 

Figure 3 illustrates the 'cluster' structure of our cellular automata. We show for each 
lattice site the period after which the sequence of *1 values is repeated again and 
again. We see lots of sites with period 1, i.e. sites which d o  not change at all within 
the observation time. As a cluster we define sets of neighbouring sites having a finite 
period larger than unity, and thus shown in our figure 3 by 2 , 3 , 4 , .  . . . We see that 
we have lots of clusters and that within a cluster different periods are possible. In 
figure 4 we show as an  example a cluster of period 7 .  When two sites of different 
period touch each other, one of the periods is an integer multiple of the other, as 
required by the definition of these automata. We also see that in contrast to percolation 
clusters, and also in contrast to those observed for Kauffman's cellular automata [ 9 ] ,  
our clusters are not very ramified but prefer rectangular shapes. Perhaps they are not 
fractal. One can easily see [7,  81 that clusters must stay within the smallest rectangle 
that can be drawn around a cluster of $1 spins in a surrounding of -1 spins (or vice 
versa). Our definition of clusters requires at  least that if the observation time was long 
enough each finite cluster is surrounded by sites with period 1, as is confirmed by 
these pictures. Sites with periods larger than the maximum observable period T will 
be denoted by a zero. 

Figure 3. Picture of single-site periods and clusters for energy E = -1.75 near the effective 
'cluster period' phase transition. 

We see in our finite systems a drastic difference between high and  low energies 
(high and  low temperatures). For low energies all lattice sites have an  observable and 
usually short period, whereas for high energies most of them have 'infinite' period and  
will be marked by a zero. This network of aperiodic sites percolates through the whole 
lattice for high energies but does not exclude the existence of finite clusters with finite 
periods, located within the holes of the infinite network of infinite-period sites. 

To find the periods of a single site we store its total history, not just a few 'snapshots' 
as for the global periods. For a given trial period we then check whether the spin 
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Figure 4. Example for the time development of a cluster with period seven. 

orientations at times differing by this trial period are the same throughout the simula- 
tion; if not, we increase the trial period by one time unit and try again. This analysis, 
to be repeated for each site separately, is therefore quite time and memory consuming. 
To limit the computer memory requirements we stored for each time one site in one 
bit only. This work was therefore not done on a vector computer and was thus restricted 
to lattice sizes up to 64x64, in contrast to the much larger lattices for the global 
periods. The data are based on at least 13 simulations for the same set of parameters. 

Figure 5 shows the observed single-site period and the fraction of sites having an 
infinite period, as a function of energy. The first quantity seems to diverge, the second 

-2 .0  -1.8 -1.6 -2.0 -1.8 -1.6 -1.4 
E 

Figure 5. Average single-site period (I) (left-hand side) and fraction F, of sites having 
'infinite' periods (right-hand side) plotted against energy E shown for different observation 
times (maximum observable period T). (+, 7 = 32; V, T = 80; 0, T = 160; 0, +, T = 320). 
Data are for 64 x 64 lattices except 32 x 32 for the full diamonds. In  the average for (I) 
the sites with period larger than T are treated as having period zero. 
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quantity seems to vanish, at about the same threshold energy Ecp= -1.75. (In our 
averages, sites without known period are treated as sites with period zero.) Our 
quantities in figure 5 are defined purely on the basis of single-spin variables, without 
any reference to clusters. For a smaller lattice of 32 x 32 instead of 64 x 64 sites, the 
systematic effects from the finite system size seem to be smaller than the statistical 
fluctuations. More important are the systematic trends with the observation time T, as 
seen in figure 5. They have similar influences as the finite-size effects at usual critical 
points: the height of the peak in the average period substantially increases as a function 
of T,  presumably as a power law. Unfortunately our data are not accurate enough to 
extract a critical exponent. On the right-hand side of figure 5 we also see a weak but 
systematic shift of the effective threshold towards smaller energies, with increasing T. 

It cannot indeed be excluded that the threshold will move to zero temperature if the 
observation time and system size both go to infinity. 

For energies larger than this ‘cluster period energy’ E,, = -1.75 we still found sites 
with finite periods; however, when we increased the observation time 7, the fraction 
1 - F, of such sites seems to approach zero, as shown in figure 6. Apparently for E 
near -1.5 one has sites which oscillate periodically over hundreds of time steps but 
finally become aperiodic. 

0.08 I i 0.98 

0 0 ° 1  02 ’ 

0.94 

j 
4 0 9 2  

I 

0 I 
I - .-hO, 90 

0 100 200 300 
T 

Figure 6. Variation with maximum observable period T of the fraction F, of sites with 
‘infinite’ period (A,  E = -1.45, V, E = -1 .55) ,  and of the average single-site period ( t )  
(0, E = -1 .45;  0, E = -1 .55) .  ( In  this average, infinite periods are set equal to zero.) 

Returning now to the clusters, ,we characterise each cluster separately by three 

(i)  Its period, which we define as the largest period observed for any site within 

(ii)  Its mass, which is the number of sites belonging to that cluster. 
(iii) Its length, which is the ‘chemical distance’ between top and bottom of the 

cluster, i.e. the minimum number of nearest-neighbour jumps one has to make to go 
from one end of the cluster to the other. (This length is defined by the ‘burning’ 
algorithm [ 101.) 

quantities. 

that cluster. 
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Figure 7 shows the number of clusters observed at the energy -1.75 as a function 
of period, mass and length. The three curves look qualitatively quite the same, except 
that period one is missing since an isolated site (cluster of mass unity) must have a 
period of 2 ,  always flipping back and forth. It would be nice to classify clusters with 
respect to two or three quantities simultaneously [ 111. However, to get such information 
reliably would require much better statistics. 

More quantitatively, figure 8 shows the second moment x, of the cluster period 
distribution as a function of energy. (Our average is done as for the ‘mean cluster 
size’ in percolation theory.) Again this quantity seems to diverge at E = -1.75 for 
lattice size 6 4 x  64. For E S -1.75 in all samples the sites with infinite period formed 
a cluster spanning the whole lattice in at least one direction; for E 2 -1.65 they never 
did. 

It seems therefore that the dynamics of Q2R cellular automata have a ‘cluster 
period’ threshold E,, (near E = -1.75 for our 6 4 x 6 4  lattices) below the Curie point 
energy E , =  -1.41. At this cluster period threshold the single-site periods and the 
cluster periods diverge, whereas the number of sites with infinite period vanish there; 
thus these sites stop there to percolate through the lattice. The precise localisation of 
this threshold is difficult since there is a systematic trend by which the threshold moves 
for not too large observation times T (see the right-hand side of figure 5 ) .  Larger T 
and larger system sizes L are needed to settle the question if this threshold takes place 
at finite temperatures or at zero temperature ( E , ,  = - 2 )  and to determine the critical 
exponents at this threshold. 

For temperatures above the Curie temperatures all spins of the lattice were moved 
after sufficiently long timz; the time needed to flip all spins at least once seems to 
diverge, or to increase drastically, at the Curie point, whereas below the Curie point 
we could not flip all spins. 

+=. 

1 2 t  100 , . +  
n l  

x .  

* 

251 x + + : *  

- -  
0 S 10 I S  .20 

Size 

Figure 7. Cluster numbers observed in 13 runs of 64x  64 lattice at E = -1.75, as classified 
by the maximum single-site period (O),  the number of sites (‘mass’) (+) and the chemical 
distance (‘length’) of the cluster ( x )  for I = 320. 
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Figure 8. Second moment of the cluster period distribution as a function of energy. The 
lines are guides to the eye (L = 64, 7 = 320, 13 samples). 

4. Conclusions 

In this paper we have seen numerically, for rather small lattices, that the Q2R cellular 
automata have three phases: one is above the Curie point E , =  -1.41 where the 
spontaneous magnetisation vanishes (as confirmed in [5]) and where all spins finally 
move. In the second one, below E,  and above E,,, the cluster sizes and periods can 
be arbitrarily large (‘infinite’ cluster); and  finally in the third phase below Ecp= -1.75 
there is no percolating cluster. We suggest calling E,, the ‘cluster period’ critical point. 

Since the spontaneous magnetisation is known to be entirely smooth for all finite 
temperatures below the Curie energy E,, E,, seems to have no influence whatsoever 
on the spontaneous magnetisation of the Ising model. This situation of two conceptually 
different critical points is somewhat similar to that observed in the three-dimensional 
Ising model [ 121: the mean size of ‘clusters’ defined as groups of neighbouring parallel 
spins diverges at a temperature about 4% below the real Curie temperature. Some 
differences to that situation should, however, be pointed out: the present investigation 
was made for two, not for three, dimensions, and  for two dimensions one does not 
have this 4% shift. Moreover, these static clusters of [12] d o  not influence at all the 
magnetisation whereas in our case the existence of finite periods lets the magnetisation 
oscillate and prevents it from reaching its true equilibrium value. In this sense our 
cluster period critical point indicates perhaps the limit energy (or temperature) below 
which these Ising cellular automata should not be utilised to simulate the normal Ising 
model. (I t  still needs to be checked whether it gives all averages correctly for higher 
temperatures [ 131.) Of course, in the sense of cellular automata the present model [6] 
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has its own right of existence even at low temperatures. Finally we mention that our 
clusters look more compact than those of Ising magnets, percolation [ 141, or Kauffman 
cellular automata [91. 

The critical point E,, that we found might well shift, even to T = 0, if the system 
size L tends to infinity. In a related problem of bootstrap percolation it has been 
shown [ 151 that the threshold goes to zero as l / log( L ) .  Some arguments by Aizenman 
for our model indicate that 2+E,,(L) might vary as l/log(L) for sufficiently large 
systems, Such a slow asymptotic shift of E,, is very difficult to verify numerically for 
L s 64 and the shifts observed in figures 1 and 2 for much larger L can be interpreted 
differently, as explained in 0 2. Since our data neither confirm nor contradict this 
hypothesis [15] of a logarithmic shift, we leave it here as an open problem. 

From the practical point of view, our finite periods make simulations of Ising 
magnets with this algorithm unreliable for E < E, , (L);  however, even for higher 
energies and infinite periods one might get wrong averages or at least violate the 
ergodicity principle. The spontaneous magnetisation calculated in [ 51 indicates that 
at not too low temperatures any deviations between the true equilibrium values and 
the simulated averages are at most very small. We have not yet tested, e.g. with the 
methods of [ 161, how many different large basins of attraction exist for our dynamic 
process, or how results depend on the way to produce the initial configuration. An 
ergodic-non-ergodic transition of the type produced in [ 171 is therefore possible. The 
deterministic nature of our cellular automata prevents us from leaving a ‘limit cycle’ 
of finite period, even if we wait very long. If it should turn out that certain parts of 
the phase space are not accessible but are needed in order to obtain good averages, 
one might introduce a certain degree of randomness into the algorithm by randomly 
flipping some spins, after long time intervals. We report separately [18] on the 
dynamical effects caused by isolated perturbations [9] of the system. 

Finally, we mention that the recent Creutz algorithm [ 191 of the microcanonical 
ensemble is a generalisation of the Q2R rule employed here. Creutz associates with 
each site a kinetic energy expressed by m computer bits and works mainly with m = 2. 
In the limit m = 0 one recovers Q2R. 
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